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Abstract. This document explains how to mesh the hemisphere with equal view factor 
elements. The main characteristic of the method is the definition of elements delimited by the 
two classical spherical coordinates (polar and azimuth angles) similar to the geographical 
longitude and latitude. This choice is very convenient to identify the localization of the 
elements on the sphere; it also simplifies a lot the determination of rays for either 
deterministic or stratified sampled Monte Carlo ray tracing. The generation of the mesh is 
very fast and consequently well suited for ray tracing methods. The quality of the set of rays 
spatially very well distributed is a fundamental element of the whole process reliability.  
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1 Introduction 
The main radiative phenomena considered in urban physics are: light, sound and heat. In 

thermal radiation, we must distinguish between exchanges that occur in short wavelengths 
(including visible light) and those that take place in the long wavelengths [Beckers 2011]. The 
objects of the urban scene only emit in long wavelengths, with an intensity that is proportional 
to the fourth power of their temperature. Thermal loads due to Sun are totally provided in 
shortwave, and their interaction with the city surfaces is independent of the temperatures.  

The fundamental differences between these problems come from the wave propagation 
behavior and the human perception: light is considered instantaneous, sound is perceived 
delayed, and heat involves inertia [Beckers 2014a].  

To solve radiative problems, we distinguish two completely different approaches. The first 
one is using some kind of mesh generated in CAD systems (typically the wide used “stl” files), 
finite element or radiosity methods [Beckers 2016]; the second deals only with discretized 
sources and uses ray tracing techniques, typically in the frame of Monte Carlo methods. 

In the first approach, the problem is based on the discretization of the objects into elements 
or patches that will be used to model the scene and simulate the physical behavior. The basic 
ingredients are the view factors. These are purely geometrical parameters that describe how 
objects are seen from each other. They can be computed by algebraic or Monte Carlo ray 
tracing methods. 

The paper is mainly based on [Beckers 2012], where the idea of using spherical equal area 
cells was introduced for the first time. The concept of coverage index, initially introduced in 
[Tregenza 1987] and enhanced in [Beckers 2014b], is actually giving valuable information on 
the cells aspect ratios. The geometric backgrounds of the method are fully developed in 
[Beckers 2014a]. 

2 View Factor 
The view factor (also called form factor) is the basic element of the radiative studies 

[Beckers 2014a, Beckers 2012, Sillion 1994]. It defines the fraction of the total power leaving 
patch Ai that is received by patch Aj. Its definition is purely geometric. The angles i and j 
relate to the direction of the vector connecting the differential elements with the vectors 
normal to these elements; rij is the distance between the differential elements.  
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Except in particular situations [Howel 2010], it is not possible to compute the view factors 
explicitly. An additional difficulty appears in presence of obstructions represented in the 
above expression by the visibility function V (yi, yj). This function is equal to 0 or 1 according 
to the possible presence of an obstacle that does not allow seeing an element yj from an 
element yi. 

It is much easier to compute the differential view factor by removing the external 
integration that will be taken into account thereafter in order to achieve the evaluation of the 
view factor, using, for instance, Gaussian quadrature rule. The differential view factor in a 
point yi surrounded by the element area dAi is given by: 
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This expression can be interpreted as the result of two successive operations known as 
Nusselt analogy, where we will momentarily disregard the visibility term V (yi, yj) not 
required for the explanation: 

1. The element is projected on the unit hemisphere centered on the point yi. This step is 
represented by the factor 2cos /j ijr of relation (2). The solid angle completed by the 
element dAj, which is also the area of the spherical polygon built from the same 
element, is given by 
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2. The spherical polygon is orthogonally projected on the base plane dAi. This projection 
corresponds to the term cos i of relation (2), which is now transformed into: 
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The term j represents the solid angle or the spherical polygon area subtended by Aj.  
The view factor is expressed in percents (projected area over unit disk area by 100). 

3 Computing the View Factor 
The view factor can be calculated principally in two ways: algebraic methods or ray tracing 

methods. In the first situation, the geometry of the scene has to be modeled. In the second 
case, we do not need the deep description of the scene: it is sufficient to give a set of simple 
patches or triangles like in the “stl” format, which comes from the stereolithography CAD 
software and is widely used for rapid prototyping, 3D printing and computer-aided 
manufacturing. 

So, the first way to calculate the differential view factor, shown in relations (3) and (4), is 
to project it onto the hemisphere defined at the concerned point and then to project the 
spherical polygon orthogonally on the plane tangent to the surface (the disk which is the base 
of the hemisphere). This projection is compared to the area of the disk. The calculation 
method is in principle easy to implement. Both steps are easy to perform for any shape that 
can be decomposed in small line segments. This procedure is applicable for any 
parameterized shape. 

The foundation of the first step is a central projection on a unit sphere centered at origin,  
which consists in dividing the positions by their modules:  

 PP
P

   (5) 

The second step, which is the orthogonal projection of P’, is straightforward provided we 
are working in axes defined with respect to the projection plane (normal vector n).  

 ( )P P P n n      (6) 

Let us start with the computation of the view factor of a polyline i iP iP i iP …which is not 
necessarily in a plane. It is shown in blue lines in Figure 1. To compute from point O the view 
factor of this figure, we have to proceed in two steps. First, we project it on the unit sphere 
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represented in the figure by its base and two orthogonal semi-meridians, respectively in the 
plane x = 0 and y = 0.  

 
Figure 1: View factor: Point to patch  

The spherical projection drawn in red is composed of great circle arcs. In the figure, 1iP , 

iP  and 1iP  are the spherical projections (5) of Pi-1, Pi and Pi+1. In a second step, we build the 
orthogonal projection of the spherical polygon on the base of the hemisphere: plane z = 0. The 
circular arcs are transformed into elliptical ones (with the two limiting cases of straight lines 
or circular arcs). In the figure, 1iP  and iP  are the orthogonal projections (6) of 1iP and iP . 

To compute the view factor, we have first to define the unit vectors fi normal to the faces of 
the spherical pyramid 1iOP iP 1iP …where 1iOP , iOP ,… are unit vectors computed from the 
apex O to the vertices of the studied contour i iP iP i iP … The vertices sequence of the 
pyramid base is defined in such a way that the spherical polygon representing its projection on 
the sphere is always situated on the left side of its boundary composed of great circles 
segments. 

 1

1  
i i

i
i i

OP OP
f

OP OP




  
     

 (7) 

The length li of the circular segment 1iP iP is given by: 

  1arcsin   i i il OP OP    (8) 

It is always positive because the arc length is greater than zero and less than . Because the 
area of a unit disk sector of angle  is equal to /2, the arc length of the spherical pyramid 
face 1iOP iP is equal to twice its area. The orthogonal projection ai of the face area on the 
base plane with normal vector n is then given by: 
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The vector n is normal to the surface supporting dS and on which we calculate the view 
factor. As defined in (7), the vectors fi are normal to the faces of the pyramid: i i iOP P , 1i iOP P

…The dot products of (9) are multiplied by the quantities li, equal to the angles of the faces of 
the pyramid at the apex O. This expression can be positive or negative, depending on its 
orientation given by the dot product. 

If we add algebraically the expressions (9) for all the contour segments, we obtain the area 
of the orthogonal projection 1 1   i i iP P P    …of the spherical polygon, which must be divided by 
 (area of the base) to obtain the relative area: 
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i i
F a l f n

       (10) 

For a shape i iP iP i iP …, the formula is giving a result that depends only on the accuracy 
of its evaluation. This shape can be as simple as a polygon or it can be extracted from the 
outline of a solid and expressed as a polyline. The precision also depends on the precision of 
the computation of the obstructions. In complex situations, these computations can be very 
heavy. 

 If the patches do not cover the full hemisphere, the complement to 1 of the sum of their 
view factors is called sky view factor (closure property of the view factors). The sky view 
factor is linked to the visible part of the vault of heaven; it is often used as design parameter in 
architectural applications. When the skyline is available, (10) can provide an easy and fast 
method to compute the sky view factor. 

4 Meshing the Hemisphere 

Before considering the second method used for computing the view factors, we have first 
to consider the spherical support used to generate the rays for the casting process. There are 
several methods to mesh a sphere: in the first one, it is covered with spherical polygons that 
are figures of the sphere delimited by great circles. In practice, these structures are based on 
some of the five regular spherical polygons.  

In another one, we build elements bounded by segments of parallels and meridians. The 
choice of this kind of mesh is justified by the fact that the spherical coordinates based on polar 
and azimuth angles (where the polar angle may be called co-latitude, zenith angle, normal 
angle, or inclination angle) or the geographical coordinates are widely used to describe the 
sphere. A direct advantage of this choice is that the azimuthal projections centered on the 
poles of these elements are figures of the circle bounded by arcs of concentric circles and radii 
segments [Beckers 2014b, Leopardi 2006]. For these reasons, it is our preferred meshing 
method. 

But before addressing the problem of the hemisphere, we first examine how to define equal 
area cells within a disk. The full disk is divided into a central one surrounded by concentric 
rings, each one containing a certain number of cells. For a mesh where all elements have the 
same area, one realizes immediately that the sequence of cells differs on the different rings. 

Let assume that N equal cells have to be defined in a unit disk. Starting from a central disk 
composed of a single cell and whose radius is equal to r1 = 1/N, we easily perform the 
computation in the ring surrounding it. This disk is composed of n cells, so that the disk that is 
the sum of the inner disc and this one contains (k2 = k1 + n) cells (or ki+1 = ki + n). The radius 
of this disc is given by ri+1 = ri ki+1. The number of cells added to each ring is arbitrary, 
provided that the total amount of cells does not exceed the value N.  
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As the filling sequence of the successive disks is arbitrary, we deduce that it is possible to 
impose at each step an additional condition, for example imposing the aspect ratio of the cells, 
either in the ring to be inserted on the disk (Figure 2), or on the hemisphere (Figure 3). This 
procedure only needs a few statements in Matlab and gives the sequence of cells in the 
different rings, from the spherical cap on the top of the dome to its base. For the example of 
100 imposed cells of Figure 2, we have the non optimized sequence: 

   1   8  22  42  68 1 00S   (11) 

 
 

Figure 2: 2D and 3D views of 100 cells with equal areas and aspect ratio equal to 1 on the disk 

In the optimized case of Figure 3, obtained with the functions developed in [Beckers 
2016b], we obtain the sequence: 

   1    8   22   40   62   84  100S   (12) 

  
Figure 3: 100 cells with same areas on the disk and aspect ratio equal to 1 on the hemisphere 

Once the sequence of cells is defined on the disk, it is easy to use an inverse azimuthal 
projection to obtain the mesh on the sphere. In the case of azimuthal orthogonal projection, 
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the relationship between the polar angle  on the unit hemisphere measured in radians and the 
radius in the projection is: 
 sinr   (13) 

On the left side of Figure 2, we see the orthogonal projection of the hemisphere on its base. 
Here, both the areas and the aspect ratios of the projection are equal. The drawback of this 
choice is the important distortion of the cells close to the base of the hemisphere. In Figure 3, 
the areas of the projection are required to be equal while the aspect ratios are required to be 
equal to one on the hemisphere. The important distortion of the cells close to the base is now 
removed. 

When we significantly increase the number of cells, we observe first that the processing 
time needed to generate the sequence of cells is negligible and secondly that the main 
difference between optimized (Figure 4, left) and non optimized (Figure 4, right) situations is 
occurring mainly close to the base. 

  
Figure 4: Comparison of the 2 solutions for a generation of 1000 cells 

5 Generating rays 

After the generation of equal view factor cells, it is possible to generate rays that will allow 
computing view factors of the scene elements. The rays are generated, for instance from the 
origin to each cell and traced to the scene, and the number of collisions with the elements is 
accounted. The view factor of an element is the ratio between the number of impacting rays 
and the total number of traced rays. If the number of traced rays is sufficient, the result tends 
to the exact solution [Vujicic 2006].  

The first method used to define the rays is deterministic, for instance, the rays pass through 
the center of each cell. It is the situation shown in the orthogonal projections Figure 5 & 
Figure 6 of the optimized cell sequence [1 15 32 54 80 107 133 151]. 

In a non optimized sequence [1 9 22 41 64 91 120 151], we observe the bad aspect ratio of 
the lower ring (Figure 7); it is confirmed by the diagram of Figure 8 showing the relative 
coverage index in each ring. This index is defined as the ratio of the area of the greatest 
inscribed circle and the cell area, compared to the same ratio computed in a plane square and 
equal to /4 [Beckers 2014b]. It also appears clearly that the density of points is lower in the 
bottom of the dome (Figure 6). The same is occurring for the random rays of Figure 10. 
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Figure 5: Deterministic 151 cells centers 

 

Figure 6: Side view of the dome composed of 151 rays 
generated from equal view factor cells 

 
Figure 7: Mesh and deterministic rays for the non optimized 151 cells dome 

 
Figure 8: Equal view factor (EVF), 151 cells mesh without cells aspect ratio optimization 
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Figure 9: Equal view factor (EVF) optimized 151 cells mesh 

In the optimized mesh where the cells aspects ratios on the sphere are close to 1, we obtain 
the new cells sequence [1 15 32 54 80 107 133 151] and the coverage indices of Figure 9. We 
observe that the worse coverage index occurs in the ring close to the top of the dome while it 
occurs in the bottom ring of the non optimized sequence. Anyway, the optimized sequence is 
better both for the minimum value and for the average. 

In the second ray tracing method, the position in each cell is defined randomly. Because all 
the cells are defined between two latitudes and two longitudes, this procedure is very reliable 
and easy to implement. This method pertains to the category of stratified sampled Monte 
Carlo methods. An example of this kind of ray distribution is shown on a side view of a dome 
in Figure 10. It appears clearly that the density of points is lower close to the base of the dome, 
which reflects the behavior of importance sampling methods. 

 
Figure 10: Side view of a dome composed of 5000 random rays 

 
The proposed method is also the most convenient one to generate uniform equal solid 

angle rays on the sphere. In this case, as proposed in [Beckers 2012], it is similar to that of 
[Leopardi 2006], but according to the performed comparative tests, we feel that it is faster, 
because it is using a pure algebraic procedure. 
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6 Conclusion 

Two methods are proposed for computing the view factors. The first one, often called 
Lambert method [Beckers 2014a], uses an explicit formulation of the point to patch view 
factor. It is very efficient and exact in the case of lack of obstacle between the point and the 
patch. The second one is based on an original method of mesh generation on the sphere or the 
hemisphere. This kind of mesh allows using both importance and stratified sampling in Monte 
Carlo ray tracing methods. It provides an efficient method to compute the view factors in 
complex urban environments because due to its geometrical simplicity, it is naturally well 
suited to deal with complex spatial configurations.  

References  

[Beckers 2011] Benoit Beckers, “Impact of solar energy on cities sustainability”, PLEA 
2011 - 27th Conference on Passive and Low Energy Architecture, Louvain-la-Neuve, Belgium, 
13-15 July 2011. 

[Beckers 2012] Benoit Beckers, Pierre Beckers, “A general rule for disk and 
hemisphere partition into equal-area cells”, Computational Geometry: Theory and 
Applications, Vol. 45, Nr. 7 2012, p. 275-283. 

[Beckers 2014a] Benoit Beckers, Pierre Beckers, Reconciliation of Geometry and 
Perception in Radiation Physics, John Wiley and Sons, Inc., 192 pages, July 2014.  

[Beckers 2014b] Benoit Beckers, Pierre Beckers, “Sky vault partition for computing 
daylight availability and shortwave energy budget on an urban scale”, Lighting Research and 
Technology, vol. 46 n°6, Pages 716-728, December, 2014  

[Beckers 2016] Benoit Beckers, “Multiscale Analysis as a Central Component of Urban 
Physics Modeling”, in: Computational Methods for Solids and Fluids, Multiscale Analysis, 
Probability Aspects and Model Reduction, Adnan Ibrahimbegovic (Ed.), Springer 
International Publishing, 2016, Pages 1- 27.  

[Beckers 2016b] Benoit Beckers, Pierre Beckers, “Complete set of Matlab procedures for 
achieving uniform ray generation”, 2016, Website: http://www.heliodon.net/ 

[Howel 2010]  J.R. Howell, R. Siegel, M.P. Menguc, Thermal Radiation Heat 
Transfer, 5th ed., Taylor and Francis / CRC, New York, 2010.  

[Leopardi 2006]  Paul Leopardi, “A partition of the unit sphere into regions of equal area 
and small diameter“, Electron. Trans. Numer. Anal. 25 2006 309–327. 

[Tregenza 1987] Tregenza Peter R., “Subdivision of the sky hemisphere for luminance 
measurements”, Lighting Research & Technology, 1987; 19: 13–14. 

[Sillion 1994]  François Sillion, Claude Puech, Radiosity and Global Illumination, 
Morgan Kaufmann Publishers, Inc., 1994. 

[Vujicic 2006]  Mile R. Vujicic, Nicholas P. Lavery, S. G. R. Brown, “Numerical 
Sensitivity and View Factor Calculation Using the Monte Carlo Method”, Proceedings of the 
Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 
2006, 220:697 

31 FICUP 2016


