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Abstract. Solar simulation for 3D city models may be a complex task if detailed
geometry is taken into account. For this reason, the models are often approxi-
mated by simpler geometry to reduce their size and complexity. However, geom-
etry details, as for example the ones provided in a roof, can significantly change
the simulation results if not taken into account. The classic solution to deal with a
detailed city model on a district scale is to use a Level-of-Detail (LoD) approach
for geometry reduction.

In this paper, we present a new LoD method for 3D city models for performing
accurate solar simulation with detailed geometry models. Given a Point of Interest
to analyze, the method works by automatically detecting and preserving all roofs
that really have significant impact on the simulation and simplifying the rest of
the geometry. We perform a test for a detailed district model showing that for
this case our method can reduce the geometry size to 5% of the original model,
preserving almost the same accuracy.
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1 Introduction

The estimation of the solar potential and the access to sunlight in urban areas is
a very important issue in building energy performance. The computation accu-
racy for solar simulation is directly influenced by the urban geometry, both at
the neighborhood and at the building scale. Because of this, a well-defined geo-
metrical model of the urban environment is mandatory for accurate analysis and
assesment.

One of the main difficulties concerning geometry detailed models is the amount
of data to deal with, affecting the memory storage and the time processing. The
classical solution is to introduce Levels of Detail (LoD) into the model in order
to simplify it. Most of the simplification methods for simulation work by rough
approximating the buildings to simple shapes like bounding boxes and basic roof
geometry. As a consequence, building elements that influence the simulation, like
a roof water tank or an antenna, may propagate errors in a lighting assessment or
in a Sky View Factor (SVF) study.

In this paper, we propose a new LoD method for urban models. Our main goal
is to provide models for performing solar simulation at full geometry resolution.
Given a 3D detailed city model and a region of interest, the method can obtain
a simplification model feasible for computing solar radiation for that region. By
computing the skyline impact over the urban geometry, the method preserves all
important roof details. A fast ray-casting engine is used against a rough approxi-
mation of the model to decide which geometry level should be instantiated.

The main contribution of our work is that it provides a fast, accurate and au-
tomatic model simplification for dealing with solar simulation in detailed urban
models. We tested our reduced model results to perform an annual daylight simu-
lation. Our results show that, for the district model used, we can obtain accurate
values with the model reduced to 5% of the original size, improving considerably
the execution time.

2 Previous Work: LoD in Urban models

Level-of-detail techniques have been largely developed in computer graphics with
the aim of reducing geometry since the first work presented by [Clark, 1976], fol-
lowed by the seminal work by [Luebke and Erikson, 1997]. The interested reader
can refer to the book at [Luebke et al., 2002] for a more exhaustive and complete
survey of general LoD techniques.

As far as urban models are concerned, a few LoD proposals come from the
use of a semantically well-defined dataset structure, as for example the CityGML
schema as defined at [Kolbe, 2009]. CityGML differentiates between five con-
secutive LoD-levels, where objects become more detailed with increasing LoD
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regarding both geometry and thematic functionality differentiation. They range
from a coarsest level in LODO0, which is essentially a two and a half dimensional
digital terrain, to full interior structures like rooms, stairs, and furniture in the top
level LOD4. In that approach, the different levels of detail are pre-made and not
adapted for specific simulation purposes.

For procedural modeling, [Parish and Miiller, 2001] presented an initial pro-
posal intended for city generation based on the L-system recursive nature. Auto-
matic LoD-generation is obtained by starting from the building envelope as axiom,
and the output of each rule iteration represents a refining step in the building gener-
ation. Although it is simple and automatic, this approach does not provide control
on geometric building details. Recently, new approaches have been proposed to in-
tegrate LoDs mechanism in the procedural processing. In [Besuievsky and Patow,
2013a], the authors developed a rewriting method of the rulesets for the buildings
for further replacing the geometric operators, which produces the right level of
detail for each asset according to some user-defined criteria. In [Besuievsky and
Patow, 2013b], they propose a highest level of detail by enabling selection, from
entire buildings up to whole blocks, for geometric reduction. These works focus
more on solving rendering problems, whereas in our approach we target more on
the model preparation for simulation analysis.

Concerning solar energy simulation, defining the optimal LoD at the neigh-
borhood scale is not a simple problem and most of the approaches are taken from
an empirical perspective. In [Rodriguez et al., 2012], a study of the sensitivity of
the geometry used is carried out taking into account the solar flux computation,
where different levels of detail elements (windows and roofs) are evaluated for a
neighborhood-scale model. In [Besuievsky et al., 2014], a configurable LoD sys-
tem based on procedural models is presented for daylight simulation. The system
allows the configuration of different criteria for approximating the full geometry
for different computations. [Biljecki et al., 2014] provided a formal and consistent
framework to define discrete and continuous levels of detail (LODs), by determin-
ing six metrics that constitute it, and discussed their quantification and relations.
Following this initial work, in [Biljecki et al., 2015], they studied the propagation
of positional error in 3D GIS, and applied this computation to the estimation of
the solar irradiation of building roofs. Next, [Biljecki et al., 2016] studied the
variety of LOD1 and LOD2 geometric references that are commonly employed
in LoD models, and performed numerical experiments to investigate their relative
difference when used as input for different spatial analyses of a 3D building model.
Their results show that two different models generated from different geometric
references, but with the same LoD, may yield substantially different results when
used in a spatial analysis.
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(a) Full model: 85.19% (b) Bbox: 83.32% (c) LoD propossal: 85.19%

Figure 1: Sky View Factor test for three different model representations.

3 Skyline Approximation Foundation

In this section, we analyze the influence that the city skyline details have on the
simulation. For this analysis, we use the Sky View Factor (SVF) as a metric for
studying the influence of the roof details on a given building. The SVF, currently
used in daylight assessment, is defined as the percentage of sky visible from a
surface, taking into account the angle of inclination to the sky vault. It is a pure
geometrical parameter that has a physical meaning. Fig. 1 shows three simple
buildings modeled at different detail resolutions: full detail resolution, bounding
box approximation represented by the envelope of each building, and a mix of
the previous ones, putting full resolution only to the roof. We compute the SVF
for a virtual point in front of the buildings, getting the same value for both the
full model and for the last approximation. We noted that most of the relevant
details for solar analysis belong to the skyline given by the roof, and that could
be obtained from the silhouette. We complete our test by computing the average
SVF with Heliodon [Beckers and Masset, 2008] on two virtual surfaces on a 3D
city model: an horizontal plane at the street level and a vertical plane in front of the
facade of a building (see Fig. 2). By comparing the results of the bounding box
approximation with full roof resolution city against the full model, we observe
a relative error lower than 1072 in both cases. Considering that the number of
polygons used in the approximation representation is 10 times smaller than the
original model, we tuned our LoD proposal following these observations.

4 LoD Generation Method

Given a 3D city model, the method works in two steps. In a first pre-processing
step, all geometry assets (like windows, balconies or roofs) are replaced by their
respective bounding boxes. We call the resulting model the rough model. In the
second step, a LoD operator decides, from a given Point of Interest (POI), the
simplification level according to a defined criteria by intersecting a bundle of rays
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(a) Full model: Hplane=34.9%, Vplane=28.2% (b) LoD propossal: Hplane=34.6%, Vplane=28.1%

Figure 2: Average Sky View Factor for horizontal and vertical planes in two dif-
ferent representations of a 3D city model.

from the POI with the rough model. The rest of this section describes the method
in detail.

4.1 Criteria

For our geometry selection/replacement to work, we designed a simple criteria
based on the observation that the relevant details for solar computation are the ones
that belong to the building silhouettes (see Section 3). For the rest of the geometry,
in most cases it will be enough to approximate it by its visible bounding box planes.
We also noted that silhouettes are more relevant at the city skyline. Our LoD model
define then three particular geometry levels:

* Level 0: The geometry is omitted from the model
* Level 1: The geometry is instantiated as its bounding box

* Level 2: The geometry is represented in full details.

4.2 LoD algorithm

The algorithm that sets the corresponding simplification levels using the previous
criteria is presented at Algorithm 1. The algorithm takes as input a fully detailed
city model and a POI, to obtain the simplified representation. After generating the
bounding boxes for the rough model (method generate BBox, see Section 4.3) it
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casts a bundle of rays from the POI (Section 4.4). The algorithm automatically
replaces all affected roofs with geometric details (method isSilohuette, see Sec-
tion 4.5), and discards all geometry not participating in the SVF computation (level
0 in the above criteria).

Algorithm 1 LoD Algorithm
Require: 3DCM: 3D City Model
Require: POI: Point of Interest
P <+ generate BBox(3DC M)
rayCastBundle(POI, P)
for each p; in P do
n < p;.hits()

if n = 0 then
pi.setLevel(0)
else

if p;.isRoof () and p;.isSilohuette() then
pi.setLevel(2)
else
p;.set Level(1)
end if
end if
end for

4.3 Bounding box Building Generation

The bounding box city model is generated in a pre-processing step. It is assumed
here that the building models are well structured into assets that represent the basic
constructive elements, like windows, doors, balconies or roofs. In general, these
elements concentrate most of the geometric complexity. These assumptions about
the building structure are reasonable, considering that the 3D building models used
in practice are usually generated by Architectural CAD systems that already pro-
vide these structures. However, if the models are given as a raw polygon soup,
as for example when obtained from acquisition techniques (e.g., with LIDAR), a
detection and classification step should be applied to structure the model. Our
current implementation is based on procedural urban models [Miiller et al., 2006],
which implicitly provide this organization: the buildings are generated from the it-
erative appliction of a set of rules, each one resulting in a product subject to further
processing by successive rules. In this model, the constructive geometric elements
are attached to the model in a final rulesset application to the final products by use
of the /nsert command.
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(a) Full model (b) Bounding box approximation model

Figure 3: The urban model.

Here we describe the algorithm for procedural models, and a similar proce-
dure should be followed for other kind of 3D models after a structuring stage, as
mentioned above. Given a detailed procedural urban model, the bounding box
generation algorithm iterates over all products of each building detecting the /n-
sert command placements. For each asset, a bounding box of the corresponding
insertion is then computed. Then, new building instances are generated, replacing
all geometry insertions by their corresponding bounding boxes (see Fig. 3(b)).

4.4 Bundle distribution

We generate the ray bundle distribution by randomly sampling the sky vault using
the equal-area cell distribution method described in [Beckers and Beckers, 2014].
By using such specific distribution, we can quickly approximate the SVF directly
by just counting the number of impacts with the city model from a given POL.

4.5 Silhouette detection

The problem for detecting the silhouette of an object has been solved by sev-
eral geometric techniques. One of the widest uses is for visualization in non-
photorealistic rendering [Markosian et al., 1997]. In our case, we can simplify
the problem with the observation that we are only interested in impact detection
in the upper hemisphere of directions with the city skyline and that all candidates
to analyze are rectangles produced by the bounding box building approximation
described above.

With these considerations, we use the bundle of rays to build a routine for sil-
houette detection. After casting rays from a given POI, we can split the rays of the
obtained distribution into two sets: the ones that impact the geometry and the ones
that go straight to the sky. We used this last set to decide if a polygon roof belongs
to the silhouette or not: our algorithm works by projecting such candidates to the
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Figure 4: Silohuette algorithm. Top candidate polygons are projected onto a
sphere center at the POI (left). By comparing their projection to the sky points,
P1 is classified as silhouette and P2 not (right).

POI distribution bundle of rays. When analyzing the projection of the top line of
the polygon, if there is any sky point of the distribution close enough (i.e., whose
distance is below a given user-defined threshold) to the line, then we can conclude
that the polygon is part of the skyline, otherwise it is not. Fig. 4 shows a graphic
example using the same buildings models of Fig. 1. The yellow top polygons of
the left are candidates for being silhouette from a given POI. Projecting P1 and
P2 to the bundle distribution of the sky points, our algorithm discards P2 from the
skyline and includes P1.

4.6 Model Aggregation

The final step of the method is to merge all instances of geometry obtained in
Levels 1 and Level 2 into a single model. The resulting geometric model is then
exported for being used by any daylight simulation application.

5 Results

In this section, we analyze the performance of our LoD approximation. First of
all, it should guarantee that the solar simulation will not be affected by the simpli-
fication method. We use the SVF computation to validate our approximation. To
show its potential use, we compute the solar impact at the windows of a facade
for a given model. We also analyze the importance of using detailed geometry by
comparing the simulation result to a rough approximation model.
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Figure 5: Simplified model for 3 window selected in the facades. The POI is set
at each center of the corner’s window of the facade.
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5.1 LoD from POI

To analyze the accuracy of our method, we computed the SVF using a detailed
model composed by 297K polygons (see Fig. 3(a)). We tested our LoD model for a
virtual facade. We generated the LoD model for the corner windows of the facade,
and the POIs were set at the center of each window. For the resulting models (see
Fig. 5) we computed the SVF for both the full and the approximated models. The
relative error is computed as E, = || SFVpu — SV Frop||/SEFVru (see Table 1).
On average, the model is reduced to 16.8K polygons, which represents around only
5% of the full input model. The processing time to generate the reduced models
is around 10 seconds. Our implementation is written with Python routines using
SideFX’s Houdini [Side-Effects-Software, 2015] as a develpment platform.

P P2 | P3 P4
SVF Full | 12.59 | 15.02 | 24.57 | 25.59
SVF App | 1331 | 14.70 | 26.60 | 24.22
Error 0.027 | 0.021 | 0.082 | 0.053
# Polygons | 20039 | 16881 | 19201 | 11388

Table 1: Sky View Factor results comparison for the reduced models.

5.2 Solar Impact Computation

To test the usability of the models, we performed a solar impact computation for
the whole year using Heliodon [Beckers and Masset, 2008]. The model is localized
in Barcelona, Spain. We compute the total daylight hours each window receives
using a 15-minute time step. Table 2 shows the resulting hours using the full
model and each LoD model for the corresponding window at the corners facade
(see Fig. 6). We observe that the relative error in average is around 2%, which is
significantly small. The savings in the simulation processing time are also signif-
icant: for the full model, the simulation takes around 5 minutes for each window,
while the same simulation takes only 15 seconds using the approximated mod-
els. Finally, we did the same simulation with the bounding box building models
(Fig. 3(b)) to analyze the relevance of using geometric details. In this case, the
error, on average for the four windows, is around 13%, too large for accurate sim-
ulation purposes. This demonstrates, again, the validity of our assumption, that
details should be preserved, but only for the skyline silhouettes.
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Pl | P2 | P3 P4
Daylight Full (h) | 889.1 | 923.6 | 1272.6 | 1357.8
Daylight LoD (h) | 875.8 | 932.9 | 1230.5 | 1299.7
Daylight Bbox (h) | 784.9 | 774.9 | 1084.3 | 1142.6
Error(Full-LoD) | 0.015 | 0.009 | 0.033 | 0.042
Error(Full-Bbox) | 0.117 | 0.191 | 0.033 | 0.188

Table 2: Daylight hours comparison for the whole year.

Figure 6: Year-daylight simulation: Full detailed urban model (left) and LoD
model for P1 (right).

6 Discussion and Perspectives

Although several LoD techniques were developed to simplify city models for dif-
ferent purposes, only a few of them focus on actual solar simulations for driving
the simplification of the model. Comparing our approach to the POI method pre-
sented in [Besuievsky et al., 2014], we can observe a significant improvement in
the accuracy of the simplification. Whereas in the mentioned technique simpli-
fication is implemented by a set of configurable distances to the POI, here we
drastically simplify the model by keeping only the geometry that has the largest
impact on the final calculation. If visualization of the simulation results is desired,
then they can easily be mapped to the original model.

Another important result of this work is the analysis of the relevance the ge-
ometric details may have on solar simulation. As it is shown in [Biljecki et al.,
2015], among the different applications of 3D city models, the solar impact, like
computing solar panels irradiance, is frequently needed. However, building mod-
els are usually simplified to LoD1 or LoD2 in CityGML format using only basic
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roof geometry, which may lead to significant differences from the real models, and
thus seriously distorting the subsequent calculations. We show here that certain
detailed geometry may be important in the impact study, and we provide a method
to handle it. Our technique for detecting the skyline can be extended for other
relevant architectural elements, as for example balconies and other protruding el-
ements, necessary for other kinds of simulations (e.g., wind, pollution, pedestrian
simulations).

Our simplification is point-of-view based, as we use the POI for reference. For
further development we plan to extend the technique for simplifying the model
from an area of interest, like a whole facade or a street. This would allow more
general calculations than with a single POI without the burden of repeating the
same simplification over and over again, but from slightly different origins.
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